Adjoint-based control of loud events in a turbulent jet
نویسندگان
چکیده
Efforts to reduce the noise from turbulent jets at fixed flow conditions, with aircraft noise as the principal technological motivation, have generally involved some degree of parametric empiricism often based upon a series of trial-and-error testing. As a result, it is unclear if the modest reductions found, in rare cases that do not greatly affect the flow field or incur prohibitive losses, are near the limit of what can be accomplished or if there are undiscovered opportunities for more substantive reductions with better designs or active control. We assess this using an adjoint-based optimization procedure in conjunction with an experimentally validated large-eddy simulation of a Mach 1.3 turbulent jet. The adjoint solution provides a definitive direction in which to adjust a model control actuation in order to reduce noise, providing guidance that seems lacking by any other current means. It is found that three conjugate-gradient iterations in the control space provide ∼3.5 dB of reduction, comparable to other reductions found empirically. The control seems to work by disrupting the coherence of acoustically efficient axisymmetric flow structures. The control and noise-reduction mechanisms are informative, but also suggest that any significantly quieter state would not be a simple perturbation from the uncontrolled jet. Additional iterations might reduce noise more significantly, but there might be only modest opportunities to reduce the sound from simple round turbulent jets without radical changes or relatively sophisticated controls. Though it is difficult to prove any behaviour in a global space of actuations, there does not seem to be a direct route based upon a local sensitivity gradient to substantially quieting a jet, even with an unrealistically flexible actuation. More complex jets or other noisy flows may be more amenable to control, in which case the adjoint-based optimization procedure demonstrated here could provide invaluable engineering guidance.
منابع مشابه
Solution of Laminar Boundary Layer and Turbulent Free Jet With Neural Networks
A novel neuro-based method is introduced to solve the laminar boundary layer and the turbulent free jet equations. The proposed method is based on cellular neural networks, CNNs, which are recently applied widely to solve partial differential equations. The effectiveness of the method is illustrated through some examples.
متن کاملSolution of Laminar Boundary Layer and Turbulent Free Jet With Neural Networks
A novel neuro-based method is introduced to solve the laminar boundary layer and the turbulent free jet equations. The proposed method is based on cellular neural networks, CNNs, which are recently applied widely to solve partial differential equations. The effectiveness of the method is illustrated through some examples.
متن کاملUse of Stochastic Turbulence Models in Jet Acoustics
There are many approaches to determine the sound propagated from turbulent flows. In hybrid methods, the turbulent noise source field is computed or modeled separately from the far-field calculations. To have an initial and quick estimation of the sound propagation, less computationally intensive methods can be developed using stochastic models of the turbulent fluctuations. In this paper, ...
متن کاملExperimental study and numerical simulation of three dimensional two phase impinging jet flow using anisotropic turbulence model
Hydrodynamic of a turbulent impinging jet on a flat plate has been studied experimentally and numerically. Experiments were conducted for the Reynolds number range of 72000 to 102000 and a fixed jet-to-plate dimensionless distance of H/d=3.5. Based on the experimental setup, a multi-phase numerical model was simulated to predict flow properties of impinging jets using two turbulent models. Mesh...
متن کاملTurbulent characteristics in flow subjected to bed suction and jet injection as a pier-scour countermeasure
The effect of a combined system of the bed suction and jet injection as a pier-scour countermeasure on the turbulent flow field is studied in a laboratory flume using an Acoustic Doppler Velocimeter (ADV). The three components of the velocities in the vertical symmetry plane in the equilibrium scour hole in front and rear of the pier under 3-jet injections and bed suction rate Qs/Q0 = 2%located...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014